Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Rapid advancement in machine learning is increasing the demand for effective graph data analysis. However, real-world graph data often exhibits class imbalance, leading to poor performance of standard machine learning models on underrepresented classes. To address this,Class-ImbalancedLearning onGraphs (CILG) has emerged as a promising solution that combines graph representation learning and class-imbalanced learning. This survey provides a comprehensive understanding of CILG’s current state-of-the-art, establishing the first systematic taxonomy of existing work and its connections to traditional imbalanced learning. We critically analyze recent advances and discuss key open problems. A continuously updated reading list of relevant articles and code implementations is available athttps://github.com/yihongma/CILG-Papers.more » « lessFree, publicly-accessible full text available August 31, 2026
- 
            Free, publicly-accessible full text available August 15, 2026
- 
            This paper examines the performance of Multimodal LLMs (MLLMs) in skilled production work, with a focus on welding. Using a novel data set of real-world and online weld images, annotated by a domain expert, we evaluate the performance of two state-of-the-art MLLMs in assessing weld acceptability across three contexts: RV & Marine, Aeronautical, and Farming. While both models perform better on online images, likely due to prior exposure or memorization, they also perform relatively well on unseen, real-world weld images. Additionally, we introduce WeldPrompt, a prompting strategy that combines Chain-of-Thought generation with in-context learning to mitigate hallucinations and improve reasoning. WeldPrompt improves model recall in certain contexts but exhibits inconsistent performance across others. These results underscore the limitations and potentials of MLLMs in high-stakes technical domains and highlight the importance of fine-tuning, domain-specific data, and more sophisticated prompting strategies to improve model reliability. The study opens avenues for further research into multimodal learning in industry applications.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Free, publicly-accessible full text available June 21, 2026
- 
            Free, publicly-accessible full text available June 21, 2026
- 
            Free, publicly-accessible full text available July 20, 2026
- 
            Free, publicly-accessible full text available March 10, 2026
- 
            Message Passing Neural Networks (MPNNs) have emerged as the de facto standard in graph representation learning. However, when it comes to link prediction, they are not always superior to simple heuristics such as Common Neighbor (CN). This discrepancy stems from a fundamental limitation: while MPNNs excel in node-level representation, they stumble with encoding the joint structural features essential to link prediction, like CN. To bridge this gap, we posit that, by harnessing the orthogonality of input vectors, pure message-passing can indeed capture joint structural features. Specifically, we study the proficiency of MPNNs in approximating CN heuristics. Based on our findings, we introduce the Message Passing Link Predictor (MPLP), a novel link prediction model. MPLP taps into quasiorthogonal vectors to estimate link-level structural features, all while preserving the node-level complexities. We conduct experiments on benchmark datasets from various domains, where our method consistently outperforms the baseline methods, establishing new state-of-the-arts.more » « lessFree, publicly-accessible full text available December 9, 2025
- 
            Free, publicly-accessible full text available December 10, 2025
- 
            Free, publicly-accessible full text available December 10, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
